A NEW METHOD FOR DEOXYGENATION OF VICINAL DIOLS

Nabin C. Barua and Ram P. Sharma*

Division of Natural Products Chemistry, Regional Research Laboratory,

Jorhat-785006, Assam, INDIA

<u>Summary: Cis</u> and <u>trans</u> vicinal diols have been converted into olefins in one step reaction with chlorotrimethylsilane and sodium iodide.

Procedures exist in literature 1-9 for the conversion of vicinal dipls to olefins but most of them require prior formation of a suitable derivative or employ costly reagents and the stringent reaction conditions lead to poor yields Barton's bis-xanthate method 10 provides alkenes at low temperature under mild neutral conditions using inexpensive reagents. Garegg et al. 1 have converted vicinal dipls to corresponding plefins in one step but the method is applicable only to trans-1,2 dipls. Besides, these methods were designed primarily to convert bis secondary vicinal dipls to the corresponding plefins. We now describe one step method for transforming both cis and trans secondary-tertiary vicinal dipls to olefins in excellent yields under mild neutral conditions (Table - I).

Table-I. Conversion of vicinal diols to olefins

Substrate ^a	Olefins ^a	Amount (m mol) of NaI	Time/ rt ^c in min	Yieldd (%)
Cholestan-5 \alpha, 6 \alpha -diol	Cholest-5-ene	1.0	30	96
Cholestan-5¢,6 β-diol	Cholest-5-ene	1.6	2 0	82
3β -Hydroxycholestan- 5α , 6α -d101	Cholesterol].4	2 5	80
3β -Hydroxycholestan- 5α , 6β -diol		1.0	30	9 5
3β -Methoxycholestan- 5α , 6α -diol	3 /3 -Methoxycholest-5-ene	1.2	10	98
3β -Methoxycholestan- 5α , 6β -d101			15	9 5
OH OH OCH 3	OCH OCH	2.0 3	5	90

a) All compounds mentioned in Table-I gave satisfactory analysis, IR, NMR and mass spectral data.

b) In every case 0.5 m mol of substrate and 1.0 m mol of chlorotrimethylsilane was used.

c) rt is room temperature.

d) Yields of the isolated products of > 90% purity as determined by t.l c , IR and NMR spectroscopy.

In a typical experiment a solution of the diol (0.5 m mol) in dry acetonitrile (2 ml) is treated with a solution of sodium iodide (1.0 m mol) dissolved in 2 ml acetonitrile at room temperature and the mixture stirred for 5 minutes. Chlorotrimethylsilane (1.0 m mol) is then added to the above mixture and the stirring is continued at room temperature till the reaction is completed (monitored on t.1.c.).

<u>Acknowledgement</u>: We are indebted to Dr.J.N. Baruah, Director, Regional Research Laboratory, Jorhat for providing necessary facilities for this work.

References:

- 1. Tipson, R.S. and Cohen, A. Carbohydrate Res., 1965, 1, 338.
- 2. Corey, E J. and Winter, R.A.E. <u>J.Amer.Soc</u>., 1963, <u>85</u>, 2267.
- 3. Semmelhack, M.F. and S. Stauffer, R.D. Tetrahedron Letters, 1973, 2667.
- 4. Estwood, F.W., Harrington, K.J., Josan, J.S. and Pura, J.L. <u>Tetrahedron</u> Letters, 1970, 5223.
- 5. Josan, J.S. and Estwood, F.W. Austral.J.Chem., 1968, 21, 2013.
- 6. Hines, J.N., Peagram, M.J., Whitham, G.H. and Writht, M. Chem.Comm., 1968, 1593.
- 7. Sharpless, K.B. and Flood, T.C. Chem.Comm., 1972, 370.
- 8. Kocienski, P.J., Lythgoe, B. and Ruston, S. <u>J.Chem.Soc.</u>, <u>Perkin I</u>,1978, 829.
- Bessodes, M., Abushanab, E. and Panzica, R.P. <u>Chem.Comm.</u>, 1981, 26.
- Barrett, A.G.M., Barton, D.H.R. and Bielski, R. <u>J.Chem.Soc., Perkin I</u>, 1979, 2378.
- 11. Garegg, Per J. and Samuelsson, B. Synthesis, 1979, 469.

(Received in UK 27 January 1982)

^{#=} Dedicated to Prof. W. Herz of Department of Chemistry, The Florida State University, Tallahassee, U.S.A. on his 60th birthday.